More readme content
continuous-integration/drone/push Build is passing Details

This commit is contained in:
Steven Polley 2024-04-20 16:11:10 -06:00
parent d1239867ae
commit f660a5a2e5
2 changed files with 29 additions and 8 deletions

View File

@ -2,13 +2,13 @@
[![Build Status](https://drone.deadbeef.codes/api/badges/steven/hyp/status.svg)](https://drone.deadbeef.codes/steven/hyp)
hyp is a [port knocking](https://www.youtube.com/watch?v=a7VJZEJVhD0) implementation written in Go, using spread-spectrum UDP as an authentication mechanism. It enables trusted agents to access services over the internet, wherever they are, and without the service being accessible by others. Your TCP and UDP ports are closed. They will not show in a port scan. Nobody else can connect to them. This is particularly useful as [there](https://nvd.nist.gov/vuln/detail/CVE-2024-21888) [have](https://nvd.nist.gov/vuln/detail/CVE-2023-20269) [been](https://nvd.nist.gov/vuln/detail/CVE-2021-26109) [a](https://nvd.nist.gov/vuln/detail/CVE-2024-22394) [few](https://nvd.nist.gov/vuln/detail/CVE-2024-21894) [VPN](https://nvd.nist.gov/vuln/detail/CVE-2024-3400) [gateway](https://nvd.nist.gov/vuln/detail/CVE-2023-27997) [vulnerabilities](https://nvd.nist.gov/vuln/detail/CVE-2024-21762) [over](https://nvd.nist.gov/vuln/detail/CVE-2022-3236) [the](https://nvd.nist.gov/vuln/detail/CVE-2024-21893) [years](https://nvd.nist.gov/vuln/detail/CVE-2022-42475). I often wonder what's out there and hasn't been discovered.
hyp is a [port knocking](https://www.youtube.com/watch?v=a7VJZEJVhD0) implementation written in Go and C. hyp uses spread-spectrum UDP as an authentication mechanism and enables trusted agents to access services over the internet, wherever they are, and without the service being accessible by others. Your TCP and UDP ports are closed. They will not show in a port scan. Nobody else can connect to them. This is particularly useful as [there](https://nvd.nist.gov/vuln/detail/CVE-2024-21888) [have](https://nvd.nist.gov/vuln/detail/CVE-2023-20269) [been](https://nvd.nist.gov/vuln/detail/CVE-2021-26109) [a](https://nvd.nist.gov/vuln/detail/CVE-2024-22394) [few](https://nvd.nist.gov/vuln/detail/CVE-2024-21894) [VPN](https://nvd.nist.gov/vuln/detail/CVE-2024-3400) [gateway](https://nvd.nist.gov/vuln/detail/CVE-2023-27997) [vulnerabilities](https://nvd.nist.gov/vuln/detail/CVE-2024-21762) [over](https://nvd.nist.gov/vuln/detail/CVE-2022-3236) [the](https://nvd.nist.gov/vuln/detail/CVE-2024-21893) [years](https://nvd.nist.gov/vuln/detail/CVE-2022-42475). I often wonder what's out there and hasn't been discovered. Why take the chance of leaving your VPN open to the whole internet? With hyp, you don't have to.
Compared to most port knocking daemons, hyp provides additional protection against replay and sweep attacks. Each authentic knock sequence is a one time use, and new knock sequences are generate every 30 seconds. hyp makes use of pre-shared keys and time to calculate an authentic knock sequence on both the client and server. The following process describes how hyp works:
Compared to most port knocking daemons, hyp is extremely fast, lightweight and has no dependency on libpcap. Instead of libpcap, hyp uses eBPF technology which runs in the kernel and only sends data to userspace that's absolutely required. hyp also provides additional protection against replay and sweep attacks. Each authentic knock sequence is a one time use, and new knock sequences are generated every 30 seconds. hyp makes use of pre-shared keys and time to calculate an authentic knock sequence on both the client and server. The following process describes how hyp works:
1. The pre-shared key is generated and distributed between both the hyp client and the hyp server.
2. The pre-shared key is run through a sha1-hmac algorithm along with the current system time, this produces the same 160 bits of output on both sides.
3. The 160 bits is reduced down to 64 bits. This helps protect the key by not revealing the entire output of the hmac... we will be transmitting over an untrusted network after all.
3. The 160 bits is reduced down to 64 bits. This helps protect the key by not revealing the entire output of the hmac... we assume you are transmitting over an untrusted network.
4. The 64 bits are divided into four 16-bit structures which are typecast to 16-bit unsigned integers. A 16-bit integer can have a value from 0-65535, the same as UDP port numbers. We have four of them now.
5. Transmit one empty datagram to the knock daemon at a time, one after another using the four integers from the previous calculation as the destination port numbers.
6. The knock daemon on the firewall verifies the sequence and performs the action of opening the firewall port configured for the client to let them in while remaining closed to everyone else.

View File

@ -1,12 +1,33 @@
# hyp server
# hypd | Hide Your Ports Daemon
hyp server is the port knocking daemon which listens for incoming authentic knock sequences.
hypd is the pork knocking daemon which listens for incoming authentic knock sequences.
### Usage
##### Starting the server
Running hypd requires generating secrets which are then shared with hyp clients. hypd is used to generate these secrets, and it's recommended you create a directory just for hyp secrets.
```bash
# As root - or user that can capture packets and modify IPTables
./hypd server eth0
# Example: create a directory named secrets
mkdir -p secrets
# Then generate a secret file in this directory
./hypd generate secret > secrets/my-first-secret
```
It's recommended you generate a secret for each trusted agent so you can granularly control revocation just by removing a secret file from the secrets directory.
Running hypd requires specifying a configuration file. It's recommended you generate the default configuration file and then edit it afterwards.
```bash
# Create a default configuration file
./hypd generate defaultconfig > hypd.conf
```
Make sure you take the time to review the hypd.conf file and edit it to your liking, this is the most important step.
Once you have set your config file, you can finally run hypd.
```bash
# As root or sudo, specify the configuration file
sudo ./hypd server hypd.conf
```